
Ansible Workshop - Exercises

Projects
Use your Ansible skills to complete a couple

of small projects.

Project - Network automation

Although the (historical) focus of Ansible was Linux automation, it is very strong with automating network as well.

Ansible collections support a wide range of vendors, device types, and actions, so you can manage your entire

network with a single automation tool. With Ansible, you can:

Automate repetitive tasks to speed routine network changes and free up your time for more strategic work

Leverage the same simple, powerful, and agent-less automation tool for network tasks that operations and

development use

Separate the data model (in a playbook or role) from the execution layer (via Ansible modules) to manage

heterogeneous network devices

Benefit from community and vendor-generated sample playbooks and roles to help accelerate network

automation projects

Communicate securely with network hardware over SSH or HTTPS

Objective

Get to know network automation with Ansible.

Network automation uses the basic Ansible concepts, but there are some differences in how the network modules

work.

Unlike most Ansible modules, network modules do not run on the managed nodes. From a user’s point of view,

network modules work like any other modules. They work with ad hoc commands, playbooks, and roles. Behind the

scenes, however, network modules use a different methodology than the other (Linux/Unix and Windows) modules

use. Ansible is written and executed in Python. Because the majority of network devices can not run Python, the

Ansible network modules are executed on the Ansible control node.

Guide

You will execute some automation tasks against Cisco ACI. The Cisco Application Centric Infrastructure allows

application requirements to define the network. This architecture simplifies, optimizes, and accelerates the entire

application deployment life cycle.

The Application Policy Infrastructure Controller manages the scalable ACI multi-tenant fabric. The APIC provides a

unified point of automation and management, policy programming, application deployment, and health monitoring

for the fabric. The APIC, which is implemented as a replicated synchronized clustered controller, optimizes

performance, supports any application anywhere, and provides unified operation of the physical and virtual

infrastructure.

The APIC enables network administrators to easily define the optimal network for applications. Data center

operators can clearly see how applications consume network resources, easily isolate and troubleshoot application

and infrastructure problems, and monitor and profile resource usage patterns.

The Cisco Application Policy Infrastructure Controller API enables applications to directly connect with a secure,

shared, high-performance resource pool that includes network, compute, and storage capabilities.

Step 1 - Prepare project

Create a new project folder in your home directory:

We will be using a Cisco ACI Sandbox available online.

Open a new browser tab and go to https://sandboxapicdc.cisco.com/#.

The credentials for accessing the Cisco Sandbox are shown below, you can copy the content by using the symbol on

the right of the code block.

Username:

Password:

Today, you might need additional Ansible modules. In the first part of the workshop, we only used a handful of

modules which are all included in the ansible-core binary. With ansible-core only 69 of the most used modules are

included:

[student@ansible-1 ~]$ mkdir aci-automation

Tip

admin

!v3G@!4@Y

https://sandboxapicdc.cisco.com/#
https://sandboxapicdc.cisco.com/#

Additional modules are installed through collections, search the Collection Index in the Ansible documentation for a

module or use the search field.

If, for example, you want to create an EC2 instance in AWS, you will need the module amazon.aws.ec2_instance . To

get the module, you'll need the collection aws of the provider amazon . Download the collection with the ansible-

galaxy utility:

[student@ansible-1 ~]$ ansible-doc -l

add_host Add a host (and alternatively a group) to the ansible-playbook in-memory

inventory

apt Manages apt-packages

apt_key Add or remove an apt key

apt_repository Add and remove APT repositories

assemble Assemble configuration files from fragments

assert Asserts given expressions are true

async_status Obtain status of asynchronous task

blockinfile Insert/update/remove a text block surrounded by marker lines

command Execute commands on targets

copy Copy files to remote locations

...

[student@ansible-1 ~]$ ansible-galaxy collection install amazon.aws

Starting galaxy collection install process

Process install dependency map

Starting collection install process

Downloading https://galaxy.ansible.com/download/amazon-aws-3.2.0.tar.gz to

/home/student/.ansible/tmp/ansible-local-55382m3kkt4we/tmp7b2kxag4/amazon-aws-3.2.0-3itpmahr

Installing 'amazon.aws:3.2.0' to

'/home/student/.ansible/collections/ansible_collections/amazon/aws'

amazon.aws:3.2.0 was installed successfully

https://docs.ansible.com/ansible/latest/collections/index.html

Well, you won't need the AWS collection, but automating the ACI with Ansible also requires additional modules, these

are not included in the ansible-core binary and need to be installed with Ansible Galaxy.

Achieve the following tasks:

You can view the installed collections with this command:

If you use the Ansible navigator (which utilizes an execution environment), the collection is available. The method for

playbook execution is up to you, why not try it with both ways?!

Step 2 - Inventory and playbook

Within your newly created project folder, create an inventory file and a playbook file (the name of the files are up to

you).

By default, Ansible will try to communicate via SSH. This will not work!

You have to instruct Ansible to communicate with the APIC REST Interface, the ACI modules do not run on the network

devices or controller, they need to run on the Ansible control node locally!

Add the necessary parameters to your inventory file!

Use the same credentials for API communication as for the login to the APIC UI.

The API endpoint (host) for the ACI modules uses the URL of the sandbox, you won't need the prefix https:// .

The documentation provides an extensive Guide for ACI automation, which also describes how to setup

communication with APIC.

Tip

Find appropriate collection for Cisco ACI automation in the documentation

Collection installed

[student@ansible-1 aci-automation]$ ansible-galaxy collection list

/home/student/.ansible/collections/ansible_collections

Collection Version

----------------- -------

ansible.posix 1.4.0

community.docker 2.7.0

community.general 5.3.0

Note

[student@ansible-1 aci-automation]$ touch inventory.ini

[student@ansible-1 aci-automation]$ touch playbook.yml

Tip

https://docs.ansible.com/ansible/9/scenario_guides/guide_aci.html#aci-guide
https://docs.ansible.com/ansible/9/scenario_guides/guide_aci.html#using-the-local-connection-method
https://docs.ansible.com/ansible/9/scenario_guides/guide_aci.html#using-the-local-connection-method
https://docs.ansible.com/ansible/9/scenario_guides/guide_aci.html#using-the-local-connection-method

Testing the successful communication with the API could be done by querying ACI system information with the

aci_system module. Create your playbook and add a task, utilizing this module. Fill all necessary parameter.

Run your playbook, if it returns a green ok status, communication is established.

For now, the gathered system information about the ACI system is not relevant for us, still, you could store the output

in a variable and output it with an appropriate module, if you are curious.

Achieve the following tasks:

You may encounter the following error messages:

Expect an error message complaining about certification verification:

If you see an error message like above, you can disable certificate validation for your task:

For a production environment this is obviously not recommended!

If you see one of the following error messages, ensure that the Sandbox is available:

Try to reload the APIC browser tab.

In case of an unavailable APIC sandbox, re-run your playbook when it comes back online.

Step 3 - Create a new tenant

Inventory and playbook created

Use variables where possible (and useful)

Successful communication with APIC established

Failure

Connection failed for https://sandboxapicdc.cisco.com/api/aaaLogin.json. Request failed: <urlopen

error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer

certificate (_ssl.c:1131)>

validate_certs: false

Failure

Connection failed for https://sandboxapicdc.cisco.com/api/aaaLogin.json. Connection failure: The

read operation timed out

Authentication failed: -1 Unable to parse output as JSON, see 'raw' output. Expecting value: line 1

column 1 (char 0)", "raw": "<html>\r\n<head><title>502 Bad Gateway</title></head>\r\n<body

bgcolor=\"white\">\r\n<center><h1>502 Bad Gateway</h1></center>\r\n<hr>

<center>nginx/1.13.12</center>\r\n</body>\r\n</html>\r\n

The APIC manages the scalable ACI multi-tenant fabric. A multi-tenant environment or multi-tenancy data centres

handle segregation of traffic between multiple tenants and ensure privacy and security between tenant data.

The goal is to create a new tenant within the APIC controller with Ansible. The tenant should have a recognizable

name e.g. demo-tenant-<initials> . Add the tenant description Workshop tenant .

Observe the tenant and it's annotation in the APIC UI.

Achieve the following tasks:

Step 4 - AP creation and EPGs

Now, that we have our own custom tenant, lets fill it with content. Create an Application profile and add multiple end

point groups. Application profiles are container for the grouping of endpoint groups. For example, an AP could group

a web server with the backend database, with storage, and so on.

Create an Application profile with the following attributes:

Parameter Value

AP name workshop

AP description Workshop AP

Monitoring Policy default

Ensure that your AP is created for your own tenant!

Let's create three EPGs for our Application profile, use a single task by creating them in a loop. The EPGs should have

the following attributes:

Loop item EPG name EPG description

Tenant created

Inspected tenant in the UI

1 web Web EPG

2 app APP EPG

3 db DB EPG

Setting the required attributes requires looping over a list of hashes. All EPGs should have the default monitoring

policy attached.

Observe the tenant in the APIC UI.

Achieve the following tasks:

No communication between the different EPGs is established yet, this would be achieved with contracts. By now, you

are experienced enough with creating objects in ACI with Ansible, let's skip the contracts creation.

Step 5 - Roles and encryption

Now that you can execute automated tasks against the ACI, let's re-format the project and use some Ansible best-

practices.

All Ansible projects should use the role structure, if your project does not already uses it, now is the time to rearrange

your content. Create a roles folder and an appropriately named sub-folder for the tenant creation with all necessary

folder and files.

Your tasks using the Ansible ACI module(s) require username and password, at least the password should be

encrypted. Ansible Vault encrypts variables and files so you can protect sensitive content rather than leaving it visible

as plaintext in playbooks or roles, take a look at the Ansible Vault documentation for further information. Encrypt the

APIC credentials and re-run your playbook.

Remember the necessary additional cli parameter when executing a playbook which references encrypted content.

Achieve the following tasks:

Step 6 - Use filters to manipulate data

Application profile created

EPGs created

Note

Tip

Project uses Ansible role structure

APIC credentials are vault-encrypted

Playbook references role, tasks are executed

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_loops.html#iterating-over-a-list-of-hashes
https://docs.ansible.com/ansible/latest/user_guide/vault.html#vault

Filters let you transform JSON data into YAML data, split a URL to extract the hostname, get the SHA1 hash of a

string, add or multiply integers, and much more. You can use the Ansible-specific filters documented here to

manipulate your data, or use any of the standard filters shipped with Jinja2.

Create a new role which utilizes an Ansible ACI module that can manage/query contract resources (vz:BrCP). Get all

contracts of the common tenant and output a list with only the contract names.

The common tenant has at least one contract (default).

Dealing with network devices often means dealing with large JSON objects and you have to filter the output to your

needs. Browse the Ansible filter documentation for a suitable filter.

The Ansible module you will be using returns a JSON output like the following:

Open the annotations (click on the multiple icons) for further explanation of the different JSON objects and what

they mean in the ACI context.

Tip

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html
https://jinja.palletsprojects.com/en/3.0.x/templates/#builtin-filters
https://docs.ansible.com/ansible/latest/collections/cisco/aci/index.html
https://docs.ansible.com/ansible/latest/collections/cisco/aci/index.html
https://docs.ansible.com/ansible/latest/collections/cisco/aci/index.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

87 88 89 90 91 92 93 94 95 96 97 98 99100101102103104105106107108109110111112113114115

{

"current": [// (1)!

{ // (2)!

"fvTenant": { // (3)!

"attributes": { // (4)!

"annotation": "",

"childAction": "",

"descr": "",

"dn": "uni/tn-common",

"extMngdBy": "",

"lcOwn": "local",

"modTs": "2024-11-02T16:06:04.547+00:00",

"monPolDn": "uni/tn-common/monepg-default",

"name": "common", // (5)!

"nameAlias": "",

"ownerKey": "",

"ownerTag": "",

"status": "",

"uid": "0",

"userdom": "all"

},

"children": [// (6)!

{

"vzBrCP": { // (7)!

"attributes": { // (8)!

"accessPrivilege": "USER",

"annotation": "",

"childAction": "",

"configIssues": "",

"descr": "",

"extMngdBy": "",

"intent": "install",

"lcOwn": "local",

"modTs": "2024-11-02T16:06:04.547+00:00",

"monPolDn": "uni/tn-common/monepg-default",

"name": "default", // (9)!

"nameAlias": "",

"ownerKey": "",

"ownerTag": "",

"prio": "unspecified",

"reevaluateAll": "no",

"rn": "brc-default",

"scope": "context",

"status": "",

"targetDscp": "unspecified",

"uid": "0",

"userdom": "all"

},

"children": [// (10)!

{

"vzSubj": {

"attributes": {

"accessPrivilege": "USER",

"annotation": "",

"childAction": "",

"configIssues": "",

"consMatchT": "AtleastOne",

"descr": "",

"extMngdBy": "",

"lcOwn": "local",

"modTs": "2024-11-02T16:06:04.547+00:00",

"monPolDn": "uni/tn-common/monepg-default",

"name": "default",

1. The key current is a list, it shows the existing configuration from the APIC after the module has finished.

2. Here starts the first list item of the current list, the list item contains another key-value-pair, therefore it is a

dictionary.

You are at current[0] .

3. The key fvTenant is a dictionary containing the keys attributes (line 5) and children (line 22).

You are at current[0]['fvTenant'] .

4. The key attributes contains key-value-pairs which describe the tenant.

You are at current[0]['fvTenant']['attributes'] .

5. This key contains the name of the tenant as its value.

You are at current[0]['fvTenant']['attributes']['name'] .

6. The children key is a list containing all contract objects. This is the list that we want as it contains all contract

names! Remember, the list may contain multiple items (contracts), you only want to retrieve the name of every

list item.

You are at current[0]['fvTenant']['children'] .

7. This is the first list item of the children list, it is the first (and in this example only) contract object.

You are at current[0]['fvTenant']['children'][0]['vzBrCP'] .

8. The key attributes contains key-value-pairs which describe the contract this time.

You are at current[0]['fvTenant']['children'][0]['vzBrCP']['attributes'] .

9. This key contains the name of the contract as its value.

You are at current[0]['fvTenant']['children'][0]['vzBrCP']['attributes']['name'] .

10. The list children contains subjects (vzSubj), which are the highest level object in contracts and contain all the

filters that determine what traffic flows between the EPGs. You can ignore this list and all other key-value-pairs,

lists or dictionaries in it.

You are at current[0]['fvTenant']['children'][0]['vzBrCP']['children'] .

"nameAlias": "", "prio": "unspecified",

"provMatchT": "AtleastOne", "revFltPorts": "yes",

"rn": "subj-default", "status": "", "targetDscp":

"unspecified", "uid": "0", "userdom": "all"

}, "children": [{

"vzRsSubjFiltAtt": { "attributes": {

"accessPrivilege": "USER", "action": "permit",

"annotation": "", "childAction": "",

"directives": "", "extMngdBy": "",

"forceResolve": "yes", "lcOwn": "local",

"modTs": "2024-11-02T16:06:04.547+00:00", "monPolDn": "uni/tn-

common/monepg-default", "priorityOverride": "default",

"rType": "mo", "rn": "rssubjFiltAtt-default",

"state": "formed", "stateQual": "none",

"status": "", "tCl": "vzFilter",

"tContextDn": "", "tDn": "uni/tn-common/flt-default",

"tRn": "flt-default", "tType": "name",

"tnVzFilterName": "default", "uid": "0",

"userdom": "all" } } }

] } }] } }] }

}]}

Copy the following task and add it after the one where you retrieved the contracts of the common tenant. The task

expects that you registered the output to the variable common_contracts !

This task will store the JSON output to the file common-contracts.json in your playbook directory. The used filters

(remove_keys and to_nice_json) clean and beautify the content a bit.

Your VScode editor shows where you are in the JSON file. You can see the path at the top of the file, with the cursor on

the name key of the default contract, the path will look like this:

Observing the output above, you can see that multiple list objects are within the complete JSON object. The value of

the key current is a list, every list item of this key is a tenant (with multiple key-value pairs which can also be

dictionaries or lists).

If you filter for a single tenant (by providing the tenant name) when using the module, the list current only has one

element. Lists (in Python, which Ansible is based on) start at element 0, the second list element is 1 and so on.

The resulting output in your playbook-run should look something like this (considering that the common tenant only

has one contract):

There are multiple ways to achieve the desired solution, try around!

Dealing with large JSON objects and outputting it to stdout may result in not being able to scroll back far enough in

your VScode terminal to see the start of your task or playbook.

You can adjust the VScode configuration yourself.

Achieve the following tasks:

Get the JSON content and store it locally for easier debugging!

- name: Write output to file for easier debugging, removing all keys with Ansible-specific content

ansible.builtin.copy:

content: "{{ common_contracts | ansible.utils.remove_keys(target=['changed', 'failed']) |

to_nice_json(indent=2) }}"

dest: "{{ playbook_dir }}/common-contracts.json"

mode: "0644"

TASK [aci-contract : Output list of contract names of Tenant 'common'] ********

ok: [demo-aci-host] => {

 "msg": [

 "default"

]

}

Tip

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html#registering-variables
file:///demo-environment/red-hat-demo-environment/#terminal-scrollback

The following tips may help you to develop a solution:

Use the cisco.aci.aci_contract module.

Define the tenant common in the module, otherwise you will get all contracts of all users, which is harder to parse.

Use state: query for listing all contract objects.

Store the module output in a variable (register).

Use the json_query filter. The filter is part of the community.general collection.

You need to install a Python package for the filter, run pip3.9 install jmespath (if your Ansible uses Python3.9,

run ansible --version to find out)

Traversing the JSON object can be achieved by current[0].fvTenant.children...

Output to stdout can be achieved with the debug module.

New role for contract handling created

Playbook runs both roles

Playbook outputs list of all contracts for common tenant

If you struggle to find a solution, here are some hints. (Try without them first!)

© Tim Grützmacher 2025

