
Ansible Workshop - Exercises

Projects
Use your Ansible skills to complete a couple

of small projects.

Project - AWS Automation

Automating Cloud infrastructure is getting more and more important. Tools like Terraform are well suited for

provisioning infrastructure in public cloud environments.

When dealing with immutable infrastructure, Terraform works well and is great at provisioning cloud resources and

applications for AWS, Azure, Docker, GCP, and others. However, there is more to IT operations than automated

infrastructure provisioning and this is why Ansible is extremely popular as well.

Terraform is an excellent cloud provisioning and de-provisioning tool for infrastructure as code. Ansible is a great all-

purpose, cross-domain automation solution.

Together, they perform in harmony to create a better experience for developers and operations teams. Still, this

workshops focus is Ansible, let us do provisioning and configuration in the cloud with the tool we learned.

Objective

Get to know cloud automation with Ansible.

Cloud automation uses the basic Ansible concepts, but there are some differences in how the modules work.

From a user’s point of view, cloud modules work like any other modules. They work with ad hoc commands,

playbooks, and roles. Behind the scenes, however, cloud modules use a different methodology than the other

(Linux/Unix and Windows) modules use. As we are communicating with an API endpoint, but Ansible and most of its

modules are written and executed in Python, you need to use the Python interpreter on the Ansible control node.

Requirements

For doing the following exercises, you will need an AWS Account and an AWS Access key (consists of an Access Key

ID and a Secret Access Key).

After creating your AWS Account, go to the navigation bar on the

upper right, choose your user name, and then choose Security

credentials.

In the Access keys section, choose Create access key. On the

Access key best practices & alternatives page, choose your use

case to learn about additional options which can help you avoid

creating a long-term access key. Mark the checkbox and click

Create Access Key. On the Retrieve access keys page, choose

either Show to reveal the value of your user's secret access key,

or Download .csv file. This is your only opportunity to save your

secret access key. After you've saved your secret access key in a

secure location, choose Done.

Most modules need the region set, use the region eu-central-

1 throughout your playbook.

Tip

Guide

The following steps explain and train you how to use the modules and inventory scripts to automate your AWS

resources with Ansible.

Step 1 - Prepare controller

Today, you will need additional Ansible modules. In the first part of the workshop, we only used a handful of modules

which are all included in the ansible-core binary. With ansible-core only 69 of the most used modules are included:

Additional modules are installed through collections, search the Collection Index in the Ansible documentation for a

suitable collection or use the search field.

Once you found the appropriate collection, install it with the ansible-galaxy CLI command:

[student@ansible-1 ~]$ ansible-doc -l

add_host Add a host (and alternatively a group) to the ansible-playbook in-memory

inventory

apt Manages apt-packages

apt_key Add or remove an apt key

apt_repository Add and remove APT repositories

assemble Assemble configuration files from fragments

assert Asserts given expressions are true

async_status Obtain status of asynchronous task

blockinfile Insert/update/remove a text block surrounded by marker lines

command Execute commands on targets

copy Copy files to remote locations

...

ansible-galaxy collection install provider.collection

https://docs.ansible.com/ansible/latest/collections/index.html

Requirements for the AWS modules are minimal, you will need an additional Python package. Install the package

with this command:

Note the version of the Python package manager utility (pip3.9)!

Your Ansible control node might have multiple Python versions installed, install necessary dependencies for the Python

version that Ansible uses.

You can check for the Python interpreter of Ansible with the ansible --version command:

Do not use sudo when installing Python packages. If you get a Permission denied, add --user , this installs the

dependencies to ~/.local/lib .

Achieve the following tasks:

You can view the installed collections with this command:

Step 2 - Prepare project

Create a new project folder in your home directory:

Within your newly created project folder, create a playbook file.

pip3.9 install boto3 --user

Note

[student@ansible-1 ~]$ ansible --version

ansible [core 2.14.0]

config file = /etc/ansible/ansible.cfg

configured module search path = ['/home/student/.ansible/plugins/modules',

'/usr/share/ansible/plugins/modules']

ansible python module location = /usr/lib/python3.9/site-packages/ansible

ansible collection location = /home/student/.ansible/collections:/usr/share/ansible/collections

executable location = /usr/bin/ansible*

python version = 3.9.13 (main, Nov 9 2022, 13:16:24) [GCC 8.5.0 20210514 (Red Hat 8.5.0-15)]

(/usr/bin/python3.9)

jinja version = 3.1.2

libyaml = True

Find appropriate collection for AWS automation in the documentation

Collection installed

Python requirements installed

[student@ansible-1 aci-automation]$ ansible-galaxy collection list

/home/student/.ansible/collections/ansible_collections

Collection Version

----------------- -------

ansible.posix 1.4.0

community.docker 2.7.0

community.general 5.3.0

[student@ansible-1 ~]$ mkdir aws-automation

You have to instruct Ansible to communicate with the AWS API, per default Ansible would try to communicate via SSH.

This will not work. Set the target of your playbook to your local machine.

The documentation provides an extensive Guide for AWS automation which can help you setting up everything. For

successful communication with the AWS API, you need to authenticate yourself, this is where your previously created

Access key is needed.

You can either specify your credentials as module arguments (you'll need to repeat them with every module) or as

environment variables. The first variant would require you to set the credentials in variables (which need to be

encrypted, this can be achieved with ansible-vault). Let's use the method with environment variables, this eases the

first steps and is also applicable if you would run your playbook in the Ansible Automation Platform.

Set the environment variables on the CLI:

Environment variables are only set in the current session, if you close your terminal, you'll need to set them again.

To remember setting the variables, you could include this optional task as the first in your playbook which asserts

that the variables are set. If the variables are missing, it will fail the playbook with a hint on what to do:

Your bash history reveals the CLI input and your credentials!

You can delete the respective entry with history -d <position> .

Tip

export AWS_ACCESS_KEY_ID='AK123'

export AWS_SECRET_ACCESS_KEY='abc123'

Warning

- name: Ensure AWS credentials are set

ansible.builtin.assert:

that:

- ansible_env.AWS_ACCESS_KEY_ID is defined

- ansible_env.AWS_SECRET_ACCESS_KEY is defined

quiet: true

fail_msg: |

No environment variables with AWS credentials found!

Set the variables with:

export AWS_ACCESS_KEY_ID='AK123'

export AWS_SECRET_ACCESS_KEY='abc123'

Danger

https://docs.ansible.com/ansible/latest/scenario_guides/guide_aci.html
https://docs.ansible.com/automation-controller/latest/html/userguide/credentials.html#amazon-web-services

You can set your credentials in a hidden file ~/.aws/credentials in your home directory in an ini file:

The section represents a credential profile which needs to be added to every module with the key-value-pair

aws_profile: profile_name , in our example with aws_profile: workshop .

Note, this solution also does not store the credentials in an encrypted way! Everybody with access to your home

directory would be able to read your credentials!

In production, its best to use an external credential provider. In the Ansible Automation platform you can store your

variables in an encrypted database or use multiple credential provider plugins.

Testing the successful communication with the API could be done by querying information about an EC2 AMI Image.

Find an appropriate module, create your playbook and add a task. Try to gather information about the following AMI,

you can copy the content with a button:

The AMI is available in the eu-central-1 region, you may to define this in the module you've chosen.

Run your playbook, if it returns a green ok status, communication is established. For now, the gathered information

about the AMI is not relevant for us, still, you could store the output in a variable and output it with an appropriate

module, if you are curious.

Achieve the following tasks:

Step 3 - Create SSH key-pair

In a later step, we will create EC2 instances. To be able to login to these hosts, we need a SSH key-pair. Let's create a

dedicated key, this can be achieved with the module openssh_keypair . The module is not part of the ansible.builtin

collection, try to find the collection where the module is stored (Tip: Use the search field in the documentation).

When you found the correct collection, install it with the ansible-galaxy collection install command.

Add a task to your playbook which creates a key-pair in the default folder in your home directory (~/.ssh). The key

should be called workshop , the module will create a private key with this name and a public key with the name

workshop.pub . The home directory of the user running the playbook is stored in the fact ansible_env.HOME , use

this as a variable and append /.ssh/workshop .

Use a key size of 2048 bits!

Alternative solution

[workshop]

aws_access_key_id = YOUR_AWS_ACCESS_KEY_ID

aws_secret_access_key = YOUR_AWS_SECRET_ACCESS_KEY

ami-06c39ed6b42908a36

Playbook created

Successful communication with AWS established

Success

Now, lets create the EC2 key-pair named workshop in AWS with our playbook.

Find the correct module and provide the public key created by the previous task.

You can access the content of the public key with a lookup plugin:

Achieve the following tasks:

Step 4 - Get default VPC

A AWS Virtual Private Cloud should already be configured for you, lets use this for our workshop. We need to get the

ID of the default VPC net, this can be achieved with Ansible as well.

Find the correct module to gather information about EC2 VPCs and add it to your playbook. Add the following

parameters:

Store the output of the module in a variable, e.g. vpc_info . Afterwards, add the following task which sets a

fact/variable with the ID of your default VPC:

The variable vpc_info contains a list vpcs . As we filtered for the default VPC, the list only contains one element,

therefore we can access the list item with 0 . The list item contains a key vpc_id , the value is what we are looking

for.

Achieve the following tasks:

If you are curious, add another task which debugs the variable to stdout.

Step 5 - Create Security group

We need to create a security group and add a rule for incoming SSH access to be able to login to our EC2 instance

later. Find the correct module and add a task, provide the following parameter:

Parameter Value Description

"{{ lookup('file', ansible_env.HOME + '/.ssh/workshop.pub') }}"

Collection with module openssh_keypair found and installed

Added task to create key pair with 2048 bits

Added task to create new AWS EC2 keypair using public key of previously created local keypair

region: eu-central-1

filters:

"is-default": true

- name: Set variable with ID of default VPC

set_fact:

default_vpc_id: "{{ vpc_info.vpcs.0.vpc_id }}"

Module for gathering VPC info identified and used

set_fact Task returns green "ok" status

name workshop-sg The name of the Security group

description Security group created by Ansible Short description

vpc_id "{{ default_vpc_id }}" The value of your variable default_vpc_id

region eu-central-1 The region we used in all other tasks

The rules parameter must hold a list, in our case a single rule is enough. Find the correct rule parameters and use

the following values:

Protocol: TCP

From: 22

To: 22

CIDR: 0.0.0.0/0

Run your playbook.

Achieve the following tasks:

Step 6 - Create EC2 instance

Now it's finally time to create a virtual machine in AWS.

Find the appropriate module and add a task to your playbook, your instance should have the following configuration

(this time it is up to you to find the correct key-value-pairs):

Must be called workshop-instance1

Must be created in eu-central-1

Must have a public IP address

Must have the workshop key assigned

Must have the size t2.micro

Must be in the security group workshop-sg

Must use the AMI ami-06c39ed6b42908a36

Should have the tag Environment: Testing attached

Choose the right value for the state parameter, your playbook should wait for a running instance!

Achieve the following task:

Step 7 - Get DNS name and login

Module for maintaining security groups identified and used

Security group successfully created

Running EC2 instance

Find a module to gather information about your EC2 instances in your region, use the filter "tag:Name": workshop-

instance1 to only get this single instance.

Store the output of the module into a variable and use the variable in another task which debugs only the public DNS

name of your previously created EC2 instance.

Copy the output of your task and login to your EC2 instance with SSH. Provide the private key and use the user ec2-

user , for example:

Achieve the following tasks:

Awesome, you created a virtual machine in the Cloud and are able to login!

Optional

Step 1 - Create multiple EC2 instances

In Step 5 you created a single EC2 instance, adjust your task to create multiple instances in a loop. The name of every

instance must differ, as well as the Environment tag.

Create three instances with the single task, with the instance being in the given Environment :

Name Environment (Tag)

workshop-instance1 Testing

TASK [Output public DNS name of workshop-instance1]

ok: [localhost] =>

 msg: ec2-3-70-238-39.eu-central-1.compute.amazonaws.com

[student@ansible-1 ~]$ ssh -i ~/.ssh/workshop ec2-user@ec2-3-70-238-39.eu-central-

1.compute.amazonaws.com

Last login: Sat Feb 11 13:27:56 2023 from ec2-3-71-15-149.eu-central-1.compute.amazonaws.com

 __| __|_)

 _| (/ Amazon Linux 2 AMI

 ___|___|___|

https://aws.amazon.com/amazon-linux-2/

16 package(s) needed for security, out of 16 available

Run "sudo yum update" to apply all updates.

Added task to gather information about EC2 instances

Added task to output public DNS name of instance

Successful SSH login to EC2 instance

Success

workshop-instance2 Testing

workshop-instance3 Production

Run your playbook, you should see two more instances being created.

Achieve the following task:

Step 2 - Create dynamic inventory

When using Ansible with AWS, inventory file maintenance will be a hectic task as AWS frequently changes IPs,

autoscaling instances, and more. Once your AWS EC2 hosts are spun up, you’ll probably want to talk to them again.

With a cloud setup, it’s best not to maintain a static list of cloud hostnames in text files. Rather, the best way to

handle this is to use the aws_ec2 dynamic inventory plugin.

Create a file workshop.aws_ec2.yml

The inventory should have two additional groups test_stage and prod_stage . The hosts have a tag Environment

with either Testing or Production , ensure that they are part of the correct group.

You can test your inventory with the ansible-inventory CLI utility, it outputs a JSON representation of how Ansible

sees your provided inventory.

Adjusted task to create three EC2 instances workshop-instance[1-3]

You need to set some Ansible connection variables, remember, direct SSH connection also only worked when

providing the SSH private key and the target user.

The documentation has a typo, the variable for the SSH private key file is not ansible_private_ssh_key_file but

ansible_ssh_private_key_file !

When you finished your inventory, use this playbook to test the connection:

Running the playbook (and providing the inventory!) results in the following output:

[student@ansible-1 aws-automation]$ ansible-inventory -i demo.aws_ec2.yml --list

{

 "_meta": {

 [..Cut for better readability..]

 }

 "all": {

 "children": [

 "aws_ec2",

 "prod_stage",

 "test_stage",

 "ungrouped"

]

 },

 "aws_ec2": {

 "hosts": [

 "ec2-18-185-94-35.eu-central-1.compute.amazonaws.com",

 "ec2-3-126-92-75.eu-central-1.compute.amazonaws.com",

 "ec2-3-70-238-39.eu-central-1.compute.amazonaws.com"

]

 },

 "prod_stage": {

 "hosts": [

 "ec2-18-185-94-35.eu-central-1.compute.amazonaws.com"

]

 },

 "test_stage": {

 "hosts": [

 "ec2-3-126-92-75.eu-central-1.compute.amazonaws.com",

 "ec2-3-70-238-39.eu-central-1.compute.amazonaws.com"

]

 }

}

Tip

test-connection.yml

- name: Playbook targeting hosts from dynamic inventory

hosts: test_stage

tasks:

- name: Try to reach hosts

ansible.builtin.ping:

https://docs.ansible.com/ansible/latest/collections/amazon/aws/docsite/aws_ec2_guide.html#compose

Authentication is done here with the credentials stored in ~/.aws/credentials

Cleanup

When you are done, remember to clean up all created resources in AWS to prevent incurring costs!

[student@ansible-1 aws-automation]$ ansible-playbook -i workshop.aws_ec2.yml test.yml

PLAY [Playbook targeting hosts from dynamic inventory]

TASK [Gathering Facts]

**

ok: [ec2-3-70-238-39.eu-central-1.compute.amazonaws.com]

ok: [ec2-3-126-92-75.eu-central-1.compute.amazonaws.com]

TASK [Try to reach hosts]

ok: [ec2-3-126-92-75.eu-central-1.compute.amazonaws.com]

ok: [ec2-3-70-238-39.eu-central-1.compute.amazonaws.com]

PLAY RECAP

**

ec2-3-126-92-75.eu-central-1.compute.amazonaws.com : ok=2 changed=0 unreachable=0

failed=0 skipped=0 rescued=0 ignored=0

ec2-3-70-238-39.eu-central-1.compute.amazonaws.com : ok=2 changed=0 unreachable=0

failed=0 skipped=0 rescued=0 ignored=0

Help wanted?

demo.aws_ec2.yml

plugin: amazon.aws.aws_ec2

aws_profile: workshop

regions:

- eu-central-1

groups:

test_stage: "'Testing' in tags.Environment"

prod_stage: "'Production' in tags.Environment"

filters:

instance-state-name: running

compose:

ansible_host: public_dns_name

ansible_ssh_private_key_file: ~/.ssh/workshop

ansible_user: ec2-user

Warning

You created the following resources in AWS:

EC2 Instance(s)

Security Group

SSH Keypair

https://eu-central-1.console.aws.amazon.com/ec2/home?region=eu-central-1#Instances:
https://eu-central-1.console.aws.amazon.com/ec2/home?region=eu-central-1#Instances:
https://eu-central-1.console.aws.amazon.com/ec2/home?region=eu-central-1#SecurityGroups:
https://eu-central-1.console.aws.amazon.com/ec2/home?region=eu-central-1#KeyPairs:
https://eu-central-1.console.aws.amazon.com/ec2/home?region=eu-central-1#KeyPairs:

© Tim Grützmacher 2025

