
Ansible Workshop - Exercises

Basics
Get to know Ansible and learn to write your

first Ansible Playbooks.

8 - Templating with Jinja2

Objective

This exercise will cover Jinja2 templating. Ansible uses Jinja2 templating to modify files before they are distributed

to managed hosts. Jinja2 is one of the most used template engines for Python, take a look at the documentation for

additional information.

Guide

Step 1 - Using Templates in Playbooks

When a template for a file has been created, it can be deployed to the managed hosts using the template module,

which supports the transfer of a local file from the control node to the managed hosts.

As an example of using templates you will change the motd file to contain host-specific data.

First create the directory templates to hold template resources in ~/ansible-files/ :

Then in the ~/ansible-files/templates/ directory create the template file motd-facts.j2 :

The template file contains the basic text that will later be copied over. It also contains variables which will be

replaced on the target machines individually.

Next we need a playbook to use this template. In the ~/ansible-files/ directory create the Playbook motd-

facts.yml :

As we just learned what handlers do, let's add one to this playbook. Add the handlers block with a simple task, which

just outputs a message:

[student@ansible-1 ansible-files]$ mkdir templates

Welcome to {{ ansible_hostname }}.

{{ ansible_distribution }} {{ ansible_distribution_version}}

deployed on {{ ansible_architecture }} architecture.

- name: Fill motd file with host data

hosts: node1

become: true

tasks:

- name: Deploy message of the day file

ansible.builtin.template:

src: motd-facts.j2

dest: /etc/motd

owner: root

group: root

mode: "0644"

https://jinja.palletsprojects.com/

Before we do a bigger challenge lab, let's see if you remember how handlers are triggered. Currently, the handler is

not triggered, add the missing keyword to the task, which deploys the template.

Add the notify keyword and the name of the handler:

You have done this a couple of times by now:

Understand what the Playbook does.

Execute the Playbook motd-facts.yml .

Observe if the handler was triggered. Re-Run the playbook multiple times.

Login to node1 via SSH and check the message of the day content.

Log out of node1.

You should see how Ansible replaces the variables with the facts it discovered from the system. The handler was

only triggered when the task reported a changed state.

Step 2 - Challenge Lab

- name: Fill motd file with host data

hosts: node1

become: true

handlers:

- name: Motd_changed

ansible.builtin.debug:

msg: "The Message of the Day was updated! SSH to node1 and check the content."

tasks:

- name: Deploy message of the day file

ansible.builtin.template:

src: motd-facts.j2

dest: /etc/motd

owner: root

group: root

mode: "0644"

Solution

- name: Fill motd file with host data

hosts: node1

become: true

handlers:

- name: Motd_changed

ansible.builtin.debug:

msg: "The Message of the Day was updated! SSH to node1 and check the content."

tasks:

- name: Deploy message of the day file

ansible.builtin.template:

src: motd-facts.j2

dest: /etc/motd

owner: root

group: root

mode: "0644"

notify: Motd_changed

Add a line to the template to list the current kernel of the managed node.

Find a fact that contains the kernel version using the commands you learned in the "Ansible Facts" chapter.

Filter for kernel.

Run the newly created playbook to find the fact name.

Change the template to use the fact you found.

Run the motd playbook again.

Check motd by logging in to node1

Tip

Find the fact:

With the wildcard in place, the output shows:

With this we can conclude the variable we are looking for is labeled ansible_kernel . Then we can update the motd-

facts.j2 template to include ansible_kernel as part of its message.

Modify the template motd-facts.j2 :

Run the playbook.

Verify the new message via SSH login to node1 .

Solution

- name: Capture Kernel Version

hosts: node1

tasks:

- name: Collect only kernel facts

ansible.builtin.setup:

filter:

- '*kernel'

register: setup_output

- name: Output variable content

ansible.builtin.debug:

msg: "{{ setup_output }}"

TASK [debug] ***

ok: [node1] => {

 "setup": {

 "ansible_facts": {

 "ansible_kernel": "4.18.0-305.12.1.el8_4.x86_64"

 },

 "changed": false,

 "failed": false

 }

}

Welcome to {{ ansible_hostname }}!

Host runs {{ ansible_distribution }} {{ ansible_distribution_version}}

Deployed on {{ ansible_architecture }} architecture

The kernel version is {{ ansible_kernel }}

Ansible

Navigator

[student@ansible-1 ~]$ ansible-playbook motd-facts.yml

[student@ansible-1 ~]$ ansible-navigator run motd-facts.yml -m stdout

Details

[student@ansible-1 ~]$ ssh node1

Welcome to node1.

Host runs RedHat 8.1

Deployed on x86_64 architecture

The kernel version is 4.18.0-305.12.1.el8_4.x86_64.

© Tim Grützmacher 2025

