
Ansible Workshop - Exercises

Basics
Get to know Ansible and learn to write your

first Ansible Playbooks.

Bonus exercises

You have finished the lab already. But it doesn’t have to end here. We prepared some slightly more advanced bonus

labs for you to follow through if you like. So if you are done with the labs and still have some time, here are some

more labs for you:

Bonus Lab 1: Prepare infrastructure

Ansible uses SSH to communicate with Linux nodes, the recommended method is to use SSH-Keys and not use a

password to connect to the managed nodes.

It is also advisable to use a dedicated user for automation on all managed nodes. In our exercises this user will be

called ansible .

Let's break the initially working (password-less) SSH-connection in the lab environment and establish a new one with

the service user ansible .

Download a script using the next command. Copy the command by clicking the copy button on the right of the code

block:

After downloading the script to your home directory, execute it:

No output is good output. Now we can configure the SSH connection the way it want.

The goal is to be able to communicate from ansible-1 as student to the ansible user on all 3 managed nodes.

We will need the (already present) SSH public key of user student on ansible-1 (use your own, not this one!):

If you want to create your own SSH-Key-Pair, use this command:

wget -q https://raw.githubusercontent.com/TimGrt/prepare-redhat-demo-system/master/break-ssh.sh

[student@ansible-1 ~]$ wget -q https://raw.githubusercontent.com/TimGrt/prepare-redhat-demo-

system/master/break-ssh.sh

[student@ansible-1 ~]$ sh break-ssh.sh

[student@ansible-1 ~]$

Success

[student@ansible-1 ~]$ cat .ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCFeZ0j9HODBeDzP5aV5mkrsIGY1mvHTLjbCZIeHNpldIGETKflG6W0/

...

Hint

ssh-keygen

Next, SSH to the ec2-user on node1.

Your are now on node1. Switch to the root user and create a new user ansible (with a home directory). After

creating the user, switch to the ansible user:

Ensure that you are the ansible user, we need to create the (hidden) .ssh directory and the authorized_keys file in

it. The authorized_keys file houses the public key of user student on the ansible-1 host, copy the key to the file

(press i in vi to enter the insert mode):

Now we have to set the correct permissions, the .ssh directory needs 0700, the authorized_keys file needs 0600.

Good! We now have established a service user for our automation. The user must be able to do root-like tasks e.g.

installing and starting services, therefore he needs sudo permissions. Switch back to the root user by entering exit ,

you are still on node1.

Clobbering the sudoers file is one of the fastest ways to make your host unusable. Whenever you deal with suoders

files, use visudo !

As the root user, create a new file under /etc/sudoers.d :

Copy the following line which enables the ansible user to use password-less sudo (use the copy button of the code

block again):

We can check if the ansible user has the required permissions:

[student@ansible-1 ~]$ ssh ec2-user@node1

[ec2-user@node1 ~]$

[ec2-user@node1 ~]$ sudo su - root

Last login: Sun Apr 17 08:36:53 UTC 2022 on pts/0

[root@node1 ~]# useradd ansible

[root@node1 ~]# su - ansible

[ansible@node1 ~]$

[ansible@node1 ~]$ mkdir .ssh

[ansible@node1 ~]$ vi .ssh/authorized_keys

[ansible@node1 ~]$ chmod 0700 .ssh

[ansible@node1 ~]$ chmod 0600 .ssh/authorized_keys

Warning

[root@node1 ~]$ visudo -f /etc/sudoers.d/automation

ansible ALL=(ALL) NOPASSWD:ALL

Log out of node1 (ensure that you are back on your ansible master node ansible-1, run exit twice) and try to log in

to node1 with the ansible user:

If password-less SSH is not working, check the permissions of the .ssh folder and the authorized_keys file on the

target host!

Repeat the steps above for node2 and node3!

Once you can reach all managed nodes password-less (and sudo-permissions are set, you will need this later), we

can start to do some Ansible stuff like executing this Ad-hoc command:

We got an error, all three nodes aren't reachable?! But manually, we can reach all nodes via SSH!

Observing the error message we can see what the problem is, Ansible tries to us reach all hosts as the student user.

We established the service user ansible for that, we must instruct Ansible to use that user. By default, Ansible will use

the user that is executing the ansible commands.

Open the Ansible inventory file, either by clicking the lab_inventory folder and the hosts file in the VScode explorer or

on the terminal.

Create a new variable section (with :vars) for the web group and set the ansible_user=ansible variable:

[root@node1 ~]# sudo -l -U ansible

Matching Defaults entries for ansible on node1:

 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin, env_reset,

env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR LS_COLORS", env_keep+="MAIL PS1 PS2 QTDIR

USERNAME LANG LC_ADDRESS LC_CTYPE", env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT

LC_MESSAGES",

 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE", env_keep+="LC_TIME LC_ALL

LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY", secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin,

!requiretty

User ansible may run the following commands on node1:

 (ALL) NOPASSWD: ALL

[student@ansible-1 ~]$ ssh ansible@node1

[ansible@node1 ~]$

Failure

Success

[student@ansible-1 ~]$ ansible web -m ping

All hosts in the web group will now use the ansible user for the SSH connection. Try with the ad hoc command again:

Success! All three nodes are reachable, we get a pong back, we proved that we can establish a SSH connection and

that the node(s) have a usable Python interpreter.

Try to run the same ad hoc command against the control group.

An error again?? Although being on the same host, Ansible tries to open an SSH connection. Adjust the inventory file

again and set the ansible_connection variable for the ansible-1 host:

[web]

node1 ansible_host=<X.X.X.X>

node2 ansible_host=<Y.Y.Y.Y>

node3 ansible_host=<Z.Z.Z.Z>

[web:vars]

ansible_user=ansible

[control]

ansible-1 ansible_host=44.55.66.77

[student@ansible-1 ~]$ ansible web -m ping

node2 | SUCCESS => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/libexec/platform-python"

 },

 "changed": false,

 "ping": "pong"

}

node3 | SUCCESS => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/libexec/platform-python"

 },

 "changed": false,

 "ping": "pong"

}

node1 | SUCCESS => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/libexec/platform-python"

 },

 "changed": false,

 "ping": "pong"

}

[student@ansible-1 ~]$ ansible control -m ping

[web]

node1 ansible_host=<X.X.X.X>

node2 ansible_host=<Y.Y.Y.Y>

node3 ansible_host=<Z.Z.Z.Z>

[web:vars]

ansible_user=ansible

[control]

ansible-1 ansible_host=44.55.66.77 ansible_connection=local

With ansible_connection=local (on host-level) Ansible uses the local Python interpreter, which is fine for our

Ansible master node. Now the ad hoc command succeeds:

Bonus Lab 2: Ad Hoc Commands

Create a new user "testuser" on node1 and node3 with a comment using an ad hoc command, make sure that it is

not created on node2 !

Find the parameters for the appropriate module using ansible-doc user (leave with q)

Use an Ansible ad hoc command to create the user with the comment "Test D User"

Use the "command" module with the proper invocation to find the userid

Delete the user and its directories, then check that the user has been deleted

Remember privilege escalation…

Your commands could look like these:

Bonus Lab 3: Templates and Variables

You have learned the basics about Ansible templates, variables and handlers. Let’s combine all of these.

Instead of editing and copying httpd.conf why don’t you just define a variable for the listen port and use it in a

template? Here is your job:

[student@ansible-1 ~]$ ansible control -m ping

ansible-1 | SUCCESS => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/libexec/platform-python"

 },

 "changed": false,

 "ping": "pong"

}

Tip

Solution

[student@ansible-1 ansible-files]$ ansible-doc -l | grep -i user

[student@ansible-1 ansible-files]$ ansible-doc user

[student@ansible-1 ansible-files]$ ansible node1,node3 -m user -a "name=testuser comment='Test D

User'" -b

[student@ansible-1 ansible-files]$ ansible node1,node3 -m command -a " id testuser" -b

[student@ansible-1 ansible-files]$ ansible node2 -m command -a " id testuser" -b

[student@ansible-1 ansible-files]$ ansible node1,node3 -m user -a "name=testuser state=absent

remove=yes" -b

[student@ansible-1 ansible-files]$ ansible web -m command -a " id testuser" -b

Define a variable listen_port for the web group with the value 8080 and another for node2 with the value 80

using the proper files.

Copy the httpd.conf file into the template httpd.conf.j2 that uses the listen_port variable instead of the

hard-coded port number.

Write a Playbook that deploys the template and restarts Apache on changes using a handler.

Run the Playbook and test the result using curl .

Remember the group_vars and host_vars directories? If not, refer to the chapter Using variables.

Tip

file:///ansible-core-variables/

Define the variable. Add this line to group_vars/web :

Add this line to host_vars/node2 :

Prepare the template:

Copy httpd.conf to httpd.conf.j2

Edit the "Listen" directive in httpd.conf.j2 to make it look like this:

Create a playbook called apache_config_tpl.yml :

First run the playbook itself, then run curl against node1 with port 8080 and node2 with port 80 .

Solution

listen_port: 8080

listen_port: 80

Listen {{ listen_port }}

- name: Apache httpd.conf deployment

hosts: web

become: true

tasks:

- name: Create Apache configuration file from template

ansible.builtin.template:

src: httpd.conf.j2

dest: /etc/httpd/conf/httpd.conf

mode: "0644"

notify:

- Restart_apache

handlers:

- name: Restart_apache

ansible.builtin.service:

name: httpd

state: restarted

[student@ansible-1 ansible-files]$ ansible-playbook apache_config_tpl.yml

[...]

[student@ansible-1 ansible-files]$ curl http://18.195.235.231:8080

<body>

<h1>This is a development webserver, have fun!</h1>

</body>

[student@ansible-1 ansible-files]$ curl http://35.156.28.209:80

<body>

<h1>This is a production webserver, take care!</h1>

</body>

© Tim Grützmacher 2025

