
Ansible Workshop - Exercises

Basics
Get to know Ansible and learn to write your

first Ansible Playbooks.

9 - Reusability with Roles

Objective

While it is possible to write a playbook in one file as we've done throughout this workshop, eventually you’ll want to

reuse files and start to organize things.

Ansible Roles are the way we do this. When you create a role, you deconstruct your playbook into parts and those

parts sit in a directory structure. This is explained in more details in Ansible documentation in Roles or in Sample

Ansible setup.

This exercise will cover:

the folder structure of an Ansible Role

how to build an Ansible Role

creating an Ansible Play to use and execute a role

using Ansible to create a Apache VirtualHost on node2

Guide

Step 1 - Understanding the Ansible Role Structure

Roles follow a defined directory structure; a role is named by the top level directory. Some of the subdirectories

contain YAML files, named main.yml . The files and templates subdirectories can contain objects referenced by the

YAML files.

An example project structure could look like this, the name of the role would be "apache":

The various main.yml files contain content depending on their location in the directory structure shown above. For

instance, vars/main.yml references variables, handlers/main.yaml describes handlers, and so on. Note that in

contrast to playbooks, the main.yml files only contain the specific content and not additional playbook information

like hosts, become or other keywords.

apache/

├── defaults

│ └── main.yml

├── files

├── handlers

│ └── main.yml

├── meta

│ └── main.yml

├── README.md

├── tasks

│ └── main.yml

├── templates

├── tests

│ ├── inventory

│ └── test.yml

└── vars

 └── main.yml

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/sample_setup.html
https://docs.ansible.com/ansible/latest/user_guide/sample_setup.html

There are actually two directories for variables: vars and default . Default variables, defaults/main.yml , have the

lowest precedence and usually contain default values set by the role authors and are often used when it is intended that

their values will be overridden. Variables set in vars/main.yml are for variables not intended to be modified.

Using roles in a Playbook is straight forward:

For each role, the tasks, handlers and variables of that role will be included in the Playbook, in that order. Any copy,

script, template, or include tasks in the role can reference the relevant files, templates, or tasks without absolute or

relative path names. Ansible will look for them in the role's files, templates, or tasks respectively, based on their use.

Step 2 - Create a Basic Role Directory Structure

Ansible looks for roles in a subdirectory called roles in the project directory. This can be overridden in the Ansible

configuration. Each role has its own directory. To ease creation of a new role the tool ansible-galaxy can be used.

Ansible Galaxy is your hub for finding, reusing and sharing the best Ansible content. ansible-galaxy helps to interact

with Ansible Galaxy. For now we'll just using it as a helper to build the directory structure.

Okay, lets start to build a role. We'll build a role that installs and configures Apache to serve a virtual host. Run these

commands in your ~/ansible-files directory:

Have a look at the role directories and their content:

Tip

- name: Launch roles

hosts: web

roles:

- role1

- role2

Tip

[student@ansible-1 ansible-files]$ mkdir roles

[student@ansible-1 ansible-files]$ ansible-galaxy init --offline roles/apache-webserver

[student@ansible-1 ansible-files]$ tree roles

Step 3 - Create the Tasks File

The main.yml file in the tasks subdirectory of the role should do the following:

Make sure httpd is installed

Make sure httpd is started and enabled

Put HTML content into the Apache document root

Install the template provided to configure the vhost

The main.yml (and other files possibly included by main.yml) can only contain tasks, not complete playbooks!

Edit the roles/apache-webserver/tasks/main.yml file:

Note that here just tasks were added. The details of a playbook are not present.

The tasks added so far do:

Install the httpd package using the package module

Use the service module to enable and start httpd

roles/

└── apache-webserver

 ├── defaults

 │ └── main.yml

 ├── files

 ├── handlers

 │ └── main.yml

 ├── meta

 │ └── main.yml

 ├── README.md

 ├── tasks

 │ └── main.yml

 ├── templates

 ├── tests

 │ ├── inventory

 │ └── test.yml

 └── vars

 └── main.yml

Note

- name: Install httpd package

ansible.builtin.package:

name: httpd

state: present

- name: Start and enable httpd service

ansible.builtin.service:

name: httpd

state: started

enabled: true

Next we add two more tasks to ensure a vhost directory structure on the managed nodes and copy HTML content:

Note that the vhost directory is created/ensured using the file module.

The term Virtual Host refers to the practice of running more than one web site (such as company1.example.com and

company2.example.com) on a single machine. The fact that they are running on the same physical server is not

apparent to the end user.

The last task we add uses the template module to create the vhost configuration file from a j2-template:

Note it is using a handler to restart httpd after an configuration update.

The full tasks/main.yml file is:

- name: Ensure vhost directory is present

ansible.builtin.file:

path: "/var/www/vhosts/{{ ansible_hostname }}"

state: directory

mode: "0755"

owner: apache

group: apache

- name: Deliver html content

ansible.builtin.copy:

src: web.html

dest: "/var/www/vhosts/{{ ansible_hostname }}/index.html"

mode: "0644"

owner: apache

group: apache

Info

- name: Deploy vhost template

ansible.builtin.template:

src: vhost.conf.j2

dest: /etc/httpd/conf.d/vhost.conf

owner: root

group: root

mode: "0644"

notify:

- Restart_httpd

Step 4 - Create the handler

Create the handler in the file roles/apache-webserver/handlers/main.yml to restart httpd when notified by the

template task:

Step 5 - Create the web.html and vhost configuration file template

Create the HTML content that will be served by the webserver.

Create an web.html file in the "src" directory of the role, the files folder. Add a simple HTML content to the

file:

- name: Install httpd package

ansible.builtin.package:

name: httpd

state: present

- name: Start and enable httpd service

ansible.builtin.service:

name: httpd

state: started

enabled: true

- name: Ensure vhost directory is present

ansible.builtin.file:

path: "/var/www/vhosts/{{ ansible_hostname }}"

state: directory

mode: "0755"

- name: Deliver html content

ansible.builtin.copy:

src: web.html

dest: "/var/www/vhosts/{{ ansible_hostname }}/index.html"

mode: "0644"

- name: Deploy vhost template

ansible.builtin.template:

src: vhost.conf.j2

dest: /etc/httpd/conf.d/vhost.conf

owner: root

group: root

mode: "0644"

notify:

- Restart_httpd

handlers file for roles/apache-webserver

- name: Restart_httpd

ansible.builtin.service:

name: httpd

state: restarted

<body>

<h1>The virtual host configuration works!</h1>

</body>

Create the vhost.conf.j2 template file in the role's templates subdirectory.

The contents of the vhost.conf.j2 template file are found below.

The vhost configuration expects that the webserver announces on Port 8080, the configuration was adjusted in a

previous exercise.

Step 6 - Test the role

You are ready to test the role against node2 . But since a role cannot be assigned to a node directly, first create a

playbook which connects the role and the host. Create the file test_apache_role.yml in the directory ~/ansible-

files :

Note the pre_tasks and post_tasks keywords. Normally, the tasks of roles execute before the tasks of a playbook.

To control order of execution pre_tasks are performed before any roles are applied. The post_tasks are

performed after all the roles have completed. Here we just use them to better highlight when the actual role is

executed.

{{ ansible_managed }}

<VirtualHost *:8080>

ServerAdmin webmaster@{{ ansible_fqdn }}

ServerName {{ ansible_fqdn }}

ErrorLog logs/{{ ansible_hostname }}-error.log

CustomLog logs/{{ ansible_hostname }}-common.log common

DocumentRoot /var/www/vhosts/{{ ansible_hostname }}/

<Directory /var/www/vhosts/{{ ansible_hostname }}/>

Options +Indexes +FollowSymlinks +Includes

Order allow,deny

Allow from all

</Directory>

</VirtualHost>

Warning

- name: Use apache-webserver role

hosts: node2

become: true

pre_tasks:

- name: Output info before any role execution

ansible.builtin.debug:

msg: "Beginning web server configuration."

post_tasks:

- name: Output info before all roles are executed

ansible.builtin.debug:

msg: "Web server has been configured."

roles:

- apache-webserver

file:///ansible-core-handlers/#step-1-handlers

In most use cases, you should not mix/use roles and tasks in your play together. If you need to have single tasks in your

play, why not create another role and include the tasks there?!

Now you are ready to run your playbook:

Run a curl command against node2 to confirm that the role worked or use the check_httpd.yml playbook (you may

need to adjust the variable in it to node2:8080):

If you are using the local development environment, remember, you are using containers instead of actual VMs! You

need to append the correct port (e.g. curl http://node1:8003" for Port 8080 of node1, or curl http://node2:8006"

for Port 8080 of node2).

Take a look at the table with the ports overview or execute podman ps and check the output.

You can also use the IP address of node2 (copy it from your inventory) and paste it into the browser (as well as

adding :8080).

Congratulations! You have successfully completed this exercise!

Troubleshooting problems

Did the final curl work?

You can see what ports the web server is running on by using the netstat command, connect to the managed node

via SSH:

If netstat is not present, install it with this command:

Info

Ansible

Navigator

[student@ansible-1 ansible-files]$ ansible-playbook test_apache_role.yml

[student@ansible-1 ansible-files]$ ansible-navigator run test_apache_role.yml -m stdout

[student@ansible-1 ansible-files]$ curl -s http://node2:8080

<body>

<h1>The virtual host configuration works!</h1>

</body>

Warning

#> sudo netstat -tulpn

#> sudo dnf install -y net-tools

file:///demo-environment/local-demo-environment/#lab-diagram

There should be a line like this:

If it is not working, make sure that /etc/httpd/conf/httpd.conf has Listen 8080 in it. This should have been

changed by Exercise 7.

tcp6 0 0 :::8080 :::* LISTEN 25237/httpd

file:///ansible-core-handlers/

© Tim Grützmacher 2025

