
Ansible Workshop - Exercises

Basics
Get to know Ansible and learn to write your

first Ansible Playbooks.



3 - Writing your first Playbook

Objective

This exercise covers using Ansible to build two Apache web servers on Red Hat Enterprise Linux. This exercise

covers the following Ansible fundamentals:

Understanding Ansible module parameters

Understanding and using the following modules

package module

service module

copy module

Understanding Idempotence and how Ansible modules can be idempotent

Guide

Playbooks are files which describe the desired configurations or steps to implement on managed hosts. Playbooks

can change lengthy, complex administrative tasks into easily repeatable routines with predictable and successful

outcomes.

A playbook can have multiple plays and a play can have one or multiple tasks. In a task a module is called, like the

modules in the previous chapter. The goal of a play is to map a group of hosts. The goal of a task is to implement

modules against those hosts.

Here is a nice analogy: When Ansible modules are the tools in your workshop, the inventory is the materials and the

Playbooks are the instructions.

Step 1 - Playbook Basics

Playbooks are text files written in YAML format and therefore need:

to start with three dashes ( --- )

proper indentation using spaces and not tabs!

There are some important concepts:

hosts: the managed hosts to perform the tasks on

tasks: the operations to be performed by invoking Ansible modules and passing them the necessary options

become: privilege escalation in playbooks

Tip

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/package_module.html
https://docs.ansible.com/ansible/latest/modules/service_module.html
https://docs.ansible.com/ansible/latest/modules/copy_module.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html#desired-state-and-idempotency


The ordering of the contents within a Playbook is important, because Ansible executes plays and tasks in the order they

are presented.

A Playbook should be idempotent, so if a Playbook is run once to put the hosts in the correct state, it should be safe

to run it a second time and it should make no further changes to the hosts.

Most Ansible modules are idempotent, so it is relatively easy to ensure this is true.

Step 2 - Directory Structure and files for your Playbook

Enough theory, it’s time to create your first Ansible playbook. In this lab you create a playbook to set up an Apache

web server in three steps:

1. Install httpd package

2. Enable/start httpd service

3. Copy over an web.html file to each web host

This Playbook makes sure the package containing the Apache web server is installed on node1 .

There is a best practice Guide on the preferred directory structures for playbooks. We strongly encourage you to read

and understand these practices as you develop your Ansible skills.

That said, our playbook today is very basic and creating a complex structure will just confuse things.

Instead, we are going to create a very simple directory structure for our playbook, and add just a couple of files to it.

If you haven't done this already, on your control host ansible-1, create a directory called ansible-files  in your

home directory and change directories into it:

Add a file called apache.yml  with the following content. As discussed in the previous exercises, use vi / vim  or, if

you are new to editors on the command line, check out the editor alternatives again.

This shows one of Ansible’s strengths: The Playbook syntax is easy to read and understand. In this Playbook:

A name is given for the play via name: .

The host to run the playbook against is defined via hosts: .

Warning

Tip

[student@ansible-1 ~]$ mkdir ansible-files

[student@ansible-1 ~]$ cd ansible-files/

---

- name: Apache server installed

hosts: node1

become: true

https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html
file:///demo-environment/editor-alternatives/


We enable user privilege escalation with become: .

You obviously need to use privilege escalation to install a package or run any other task that requires root permissions.

This is done in the Playbook by become: true .

Now that we've defined the play, let's add a task to get something done. We will add a task in which the RHEL

package manager will ensure that the Apache package is installed in the latest version. Modify the file so that it

looks like the following listing:

Since playbooks are written in YAML, alignment of the lines and keywords is crucial. Make sure to vertically align the t in

task  with the b in become . Once you are more familiar with Ansible, make sure to take some time and study a bit the

YAML Syntax.

In the added lines:

We started the tasks part with the keyword tasks: .

A task is named and the module for the task is referenced. Here it uses the package  module.

Parameters for the module are added:

name:  to identify the package name

state:  to define the wanted state of the package

The module parameters are individual to each module. If in doubt, look them up again with ansible-doc .

Save your playbook and exit your editor.

Step 3 - Running the Playbook

To run your playbook, use the ansible-playbook <playbook>  command as follows:

Tip

---

- name: Apache server installed

hosts: node1

become: true

tasks:

- name: Install Apache package

ansible.builtin.package:

name: httpd

state: present

Tip

Tip

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html


The existing /etc/ansible/ansible.cfg  file provides the location of your inventory file. If this was not set within your

ansible.cfg  file, the command to run the playbook would be:

The configuration file does set some more parameters, take a look. If you want to know which config file is used and

where it is stored, run ansible --version . The output shows the currently used config file.

Once the playbook has completed, connect to node1  via SSH to make sure Apache has been installed:

Use the command rpm -qi httpd  to verify httpd is installed:

Log out of node1  with the command exit  so that you are back on the control host and verify the installed package

with an Ansible playbook named package.yml . Create the file and paste in the following content:

Ansible

If you see this error, this is not your fault, but a missing plugin.

In the demo environment, only the ansible-core  package is installed. The missing plugin (a callback plugin formats

the output Ansible is producing) is not part of the ansible.builtin  collection, you need to install it.

If you want to know where this configuration is stored, take a look at the following tip.

Navigator

[student@ansible-1 ansible-files]$ ansible-playbook apache.yml

What does Invalid callback for stdout specified  mean?

ansible-galaxy collection install community.general

[student@ansible-1 ansible-files]$ ansible-navigator run apache.yml -m stdout

Tip

ansible-playbook -i /home/student/lab_inventory/hosts apache.yml

[student@ansible-1 ansible-files]$ ssh node1

Last login: Wed May 15 14:03:45 2019 from 44.55.66.77

Managed by Ansible

[ec2-user@node1 ~]$ rpm -qi httpd

Name        : httpd

Version     : 2.4.37

[...]



The playbook (and some of the following playbooks) make use of variables, you will learn about them in the next

chapter.

The playbook has two tasks, the first one uses the package_facts  module, it does what it says, it gathers

information about packages. These facts are not gathered by default with the "Gather facts" tasks (which uses the

setup  module) and must be collected separately.

The second task uses the debug  module. The variable ansible_facts is extended with the packages key, which

contains a dictionary with all packages installed on the managed node. The httpd package could be installed in

multiple versions, therefore every package key, in our case httpd, is a list. We have installed only one version of httpd

(thus, we have a list with only one element), we get the version of httpd with [0].version .

The output should look like this:

---

- name: Check packages

hosts: node1

become: true

vars:

package: "httpd"

tasks:

- name: Gather the package facts

ansible.builtin.package_facts:

manager: auto

- name: Output message if package is installed

ansible.builtin.debug:

msg: "{{ package }} in Version {{ ansible_facts.packages[package][0].version }} is

installed!"

Note

Ansible

Navigator

[student@ansible-1 ~]$ ansible-playbook package.yml

[student@ansible-1 ~]$ ansible-navigator run package.yml -m stdout



Execute the command ansible-playbook apache.yml  for a second time, and compare the output.

Step 4 - Add one more task

The next part of the Ansible playbook makes sure the Apache application is enabled and started on node1 .

On the control host, as your student user, edit the file ~/ansible-files/apache.yml  to add a second task using the

service  module. The Playbook should now look like this:

What exactly did we do?

a second task named "Apache enabled and running" is created

a module is specified ( service )

The module service  takes the name of the service ( httpd ), if it should be permanently set ( enabled ), and its

current state ( started )

Thus with the second task we make sure the Apache server is indeed running on the target machine. Run your

extended Playbook:

PLAY [Check packages] **********************************************************

TASK [Gathering Facts] *********************************************************

ok: [ansible]

TASK [Gather the package facts] ************************************************

ok: [ansible]

TASK [Check whether a httpd  is installed] *************************************

ok: [ansible] => {

    "msg": "httpd 2.4.37 is installed!"

}

PLAY RECAP *********************************************************************

ansible                    : ok=3    changed=0    unreachable=0    failed=0    skipped=0

rescued=0    ignored=0  

---

- name: Apache server installation

hosts: node1

become: true

tasks:

- name: Install Apache package

ansible.builtin.package:

name: httpd

state: present

- name: Ensure Apache is enabled and running

ansible.builtin.service:

name: httpd.service

enabled: true

state: started

Ansible

[student@ansible-1 ~]$ ansible-playbook apache.yml



Run the playbook a second time to get used to the change in the output.

Use an Ansible playbook labeled service_state.yml  to make sure the Apache (httpd) service is running on

node1 .

This would be the same as checking the service state manually on node1  with: systemctl status httpd .

Step 5 - Extend your Playbook

Check that the tasks were executed correctly and Apache is accepting connections: Make an HTTP request using

Ansible’s uri  module in a playbook named check_httpd.yml  from the control node to node1 .

Expect a lot of red lines and a 403 status!

If you are using the local development environment, remember, you are using containers instead of actual VMs! You

need to append the correct port (e.g. node: "node1:8002" ).

Take a look at the table with the ports overview or execute podman ps  and check the output.

---

- name: Check Service status

hosts: node1

become: true

vars:

service: "httpd.service"

tasks:

- name: Get state of all service

ansible.builtin.service_facts:

- name: Output service state of {{ service }}

ansible.builtin.debug:

msg: "{{ ansible_facts['services'][service]['state'] }}"

Ansible

Navigator

[student@ansible-1 ~]$ ansible-playbook service_state.yml

[student@ansible-1 ~]$ ansible-navigator run service_state.yml -m stdout

---

- name: Check URL

hosts: control

vars:

node: "node1"

tasks:

- name: Check that you can connect (GET) to a page and it returns a status 200

ansible.builtin.uri:

url: "http://{{ node }}"

Warning

file:///demo-environment/local-demo-environment/#lab-diagram


There are a lot of red lines and an error: As long as there is not at least an index.html  file to be served by Apache, it

will throw an ugly "HTTP Error 403: Forbidden" status and Ansible will report an error.

So why not use Ansible to deploy a simple index.html  file? On the ansible control host, as the student  user, create

the directory files  to hold file resources in ~/ansible-files/ :

Then create the file ~/ansible-files/files/web.html  on the control node:

In a previous example, you used Ansible’s copy  module to write text supplied on the command line into a file. Now

you’ll use the module in your playbook to copy a file.

On the control node as your student user edit the file ~/ansible-files/apache.yml  and add a new task utilizing the

copy  module. It should now look like this:

What does this new copy task do? The new task uses the copy  module and defines the source and destination

options for the copy operation as parameters.

Ansible

Navigator

[student@ansible-1 ~]$ ansible-playbook check_httpd.yml

[student@ansible-1 ~]$ ansible-navigator run check_httpd.yml -m stdout

[student@ansible-1 ansible-files]$ mkdir files

<body>

<h1>Apache is running fine</h1>

</body>

---

- name: Apache server installation

hosts: node1

become: true

tasks:

- name: Install Apache package

ansible.builtin.package:

name: httpd

state: present

- name: Ensure Apache is enabled and running

ansible.builtin.service:

name: httpd.service

enabled: true

state: started

- name: Copy file for webserver index

ansible.builtin.copy:

src: web.html

dest: /var/www/html/index.html

mode: "0644"

owner: apache

group: apache



Run your extended Playbook:

Have a good look at the output, notice the changes of "CHANGED" and the tasks associated with that change.

Run the Ansible playbook check_httpd.yml  using the "uri" module from above again to test Apache. The

command should now return a friendly green "status: 200" line, amongst other information.

Step 6 - Practice: Apply to Multiple Host

While the above, shows the simplicity of applying changes to a particular host. What about if you want to set

changes to many hosts? This is where you'll notice the real power of Ansible as it applies the same set of tasks

reliably to many hosts.

So what about changing the apache.yml Playbook to run on node1 and node2 and node3 ?

As you might remember, the inventory lists all nodes as members of the group web :

Change the playbook hosts  parameter to point to web  instead of node1 :

Ansible

Navigator

[student@ansible-1 ansible-files]$ ansible-playbook apache.yml

[student@ansible-1 ansible-files]$ ansible-navigator run apache.yml -m stdout

[web]

node1 ansible_host=node1.example.com

node2 ansible_host=node2.example.com

node3 ansible_host=node3.example.com



Now run the playbook:

Verify if Apache is now running on all web servers (node1, node2, node3). All output should be green.

---

- name: Apache server installation

hosts: web

become: true

tasks:

- name: Install Apache package

ansible.builtin.package:

name: httpd

state: present

- name: Ensure Apache is enabled and running

ansible.builtin.service:

name: httpd.service

enabled: true

state: started

- name: Copy file for webserver index

ansible.builtin.copy:

src: web.html

dest: /var/www/html/index.html

mode: "0644"

owner: apache

group: apache

Ansible

Navigator

[student@ansible-1 ansible-files]$ ansible-playbook apache.yml

[student@ansible-1 ansible-files]$ ansible-navigator run apache.yml -m stdout



© Tim Grützmacher 2025


