
Ansible Workshop - Exercises

Basics
Get to know Ansible and learn to write your

first Ansible Playbooks.

6 - Run tasks multiple times

Objective

Get to know the loop , with_<lookup> , and until keywords to execute a task multiple times.

The loop keyword is not yet a full replacement for with_<lookup> , but we recommend it for most use cases. Both

keywords achieve the same thing (although a bit differently under the hood).

You may find e.g. with_items in examples and the use is not (yet) deprecated - that syntax will still be valid for the

foreseeable future - but try to use the loop keyword whenever possible.

The until keyword is used to retry a task until a certain condition is met. For example, you could run a task up to X

times (defined by a retries parameter) with a delay of X seconds between each attempt. This may be useful if your

playbook has to wait for the startup of a process before continuing.

Guide

Loops enable us to repeat the same task over and over again. For example, lets say you want to create multiple

users. By using an Ansible loop, you can do that in a single task. Loops can also iterate over more than just basic

lists. For example, if you have a list of users with their corresponding group, loop can iterate over them as well.

Find out more about loops in the Ansible Loops documentation.

Step 1 - Simple Loops

To show the loops feature we will generate three new users on node1 . For that, create the file loop_users.yml in

~/ansible-files on your control node as your student user. We will use the user module to generate the user

accounts.

Understand the playbook and the output:

The names are not provided to the user module directly. Instead, there is only a variable called {{ item }} for

the parameter name .

The loop keyword lists the actual user names. Those replace the {{ item }} during the actual execution of

the playbook.

During execution the task is only listed once, but there are three changes listed underneath it.

- name: Demo playbook for loops

hosts: node1

become: true

tasks:

- name: Ensure multiple users are present

ansible.builtin.user:

name: "{{ item }}"

state: present

loop:

- dev_user

- qa_user

- prod_user

https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html

Step 2 - Loops over hashes

As mentioned loops can also be over lists of hashes (multiple key-value-pairs in every list item). Imagine that the

users should be assigned to different additional groups:

The user module has the optional parameter groups which defines the group (or list of groups) the user should be

added to. To reference items in a hash, the {{ item }} keyword needs to reference the sub-key: {{ item.group }}

for example.

By default, the user is removed from all other groups. Use the module parameter append: true to modify this.

Let's rewrite the playbook to create the users with additional user rights:

Check the output:

Again the task is listed once, but three changes are listed. Each loop item with its content is shown.

At least one user was not created because of a missing group, the playbook failed?

Well, we did not create all groups, the user-module does not do this! Some groups are already present, either they were

present by default or were created when we installed packages, other groups must be created before we can use them.

- username: dev_user

group: ftp

- username: qa_user

group: apache

- username: prod_user

group: admin

Hint

- name: Demo playbook for loops

hosts: node1

become: true

tasks:

- name: Ensure multiple users are present

ansible.builtin.user:

name: "{{ item.username }}"

state: present

groups: "{{ item.group }}"

loop:

- username: dev_user

group: ftp

- username: qa_user

group: apache

- username: prod_user

group: admin

Failure

To ensure all groups are created, before you reference them, add one more task which creates the groups for you!

Use the ansible.builtin.group module and loop over the same list as the task which creates the users, this list

contains all groups which need to be created.

Success

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/group_module.html

Instead of repeating the list in the loop, you can (and should!) relocate the loop content to a variable and reference

this one. Take a look at the following playbook:

Need help?

- name: Demo playbook for loops

hosts: node1

become: true

tasks:

Looping over same list as the next task, but only using/referencing the groups key

- name: Ensure groups are present

ansible.builtin.group:

name: "{{ item.group }}"

state: present

loop:

- username: dev_user

group: ftp

- username: qa_user

group: apache

- username: prod_user

group: admin

- name: Ensure multiple users are present

ansible.builtin.user:

name: "{{ item.username }}"

state: present

groups: "{{ item.group }}"

loop:

- username: dev_user

group: ftp

- username: qa_user

group: apache

- username: prod_user

group: admin

- name: Demo playbook for loops

hosts: node1

become: true

vars:

user_and_group_list:

- username: dev_user

group: ftp

- username: qa_user

group: apache

- username: prod_user

group: admin

tasks:

- name: Ensure groups are present

ansible.builtin.group:

name: "{{ item.group }}"

state: present

loop: "{{ user_and_group_list }}"

- name: Ensure multiple users are present

ansible.builtin.user:

name: "{{ item.username }}"

state: present

groups: "{{ item.group }}"

loop: "{{ user_and_group_list }}"

Run the playbook again to ensure all users (and groups) are created!

Afterwards, verify that the user prod_user was indeed created on node1 using the following playbook, name it

user_id.yml :

- name: Get user ID play

hosts: node1

vars:

myuser: "prod_user"

tasks:

- name: Get info for {{ myuser }}

ansible.builtin.getent:

database: passwd

key: "{{ myuser }}"

- name: Output info for {{ myuser }}

ansible.builtin.debug:

msg: "{{ myuser }} uid: {{ getent_passwd[myuser][1] }}"

Ansible

Navigator

$ ansible-playbook user_id.yml

PLAY [Get user ID play]

**

TASK [Gathering Facts]

ok: [node1]

TASK [Get info for prod_user]

ok: [node1]

TASK [Output info for prod_user]

**

ok: [node1] => {

 "msg": [

 "prod_user uid: 1002"

]

}

PLAY RECAP

node1 : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0

ignored=0

It is possible to insert a string directly into the dictionary structure like this (although it makes the task less flexible):

As you can see the value (prod_user) of the variable myuser is used directly. It must be enclosed in single quotes. You

can't use normal quotation marks, as these are used outside of the whole variable.

Step 3 - Loops with list-variable

Up to now, we always provided the list to loop in the loop keyword directly, most of the times you will provide the list

with a variable.

This playbook uses two magic variables, these variables cannot be set directly by the user and are always defined.

The second task for example, uses the special variable ansible_play_hosts , which contains a list of hosts in the

current play run, failed or unreachable hosts are excluded from this list. The first task uses the special variable

groups , this contains a dictionary with all the groups in the inventory and each group has the list of hosts that

belong to it.

Copy the contents to a file special-variables.yml and run the playbook.

We can use the playbook to display that the loop keyword needs list-input, if you provide otherwise, Ansible will

display an error message.

You can provoke this, if you change line 8 to loop: "{{ groups }}" . With that change you would try to loop a

dictionary, this obviously fails.

Hint

- name: Output info for user

ansible.builtin.debug:

msg: "{{ myuser }} uid: {{ getent_passwd[myuser]['prod_user'][1] }}"

- name: Use Ansible magic variables

hosts: control

tasks:

- name: Show all the hosts in the inventory

ansible.builtin.debug:

msg: "{{ item }}"

loop: "{{ groups['all'] }}"

- name: Show all the hosts in the current play

ansible.builtin.debug:

msg: "{{ item }}"

loop: "{{ ansible_play_hosts }}"

fatal: [node1]: FAILED! => {"msg": "Invalid data passed to 'loop', it requires a list, got this

instead: {'all': ['node1', 'node2', 'node3'], 'ungrouped': [], 'web': ['node1', 'node2',

'node3']}. Hint: If you passed a list/dict of just one element, try adding wantlist=True to your

lookup invocation or use q/query instead of lookup."}

https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html

© Tim Grützmacher 2025

