
Ansible Workshop - Exercises

Basics
Get to know Ansible and learn to write your

first Ansible Playbooks.

7 - Trigger changes with Handlers

Objective

Get to know Handler, a special task which is defined in its own play parameter. A handler is often used to restart

services, but it can be used with every module Ansible offers.

Guide

Sometimes when a task does make a change to the system, an additional task or tasks may need to be run. For

example, a change to a service’s configuration file may then require that the service be restarted so that the changed

configuration takes effect.

Here Ansible’s handlers come into play. Handlers can be seen as inactive tasks that only get triggered when explicitly

invoked using the "notify" statement. Read more about them in the Ansible Handlers documentation.

Step 1 - Handlers

As a an example, let’s write a playbook that:

manages Apache’s configuration file /etc/httpd/conf/httpd.conf on all hosts in the web group

restarts Apache when the file has changed

First we need the file Ansible will deploy, let’s just take the one from node1.

We now have the configuration file for our webserver, we will adjust the file later and copy it back to all webserver

hosts later.

Next, create the Playbook httpd_conf.yml . Make sure that you are in the directory ~/ansible-files .

scp node1:/etc/httpd/conf/httpd.conf ~/ansible-files/files/.

- name: Manage httpd.conf

hosts: web

become: true

handlers:

- name: Restart_apache

ansible.builtin.service:

name: httpd

state: restarted

tasks:

- name: Copy Apache configuration file

ansible.builtin.copy:

src: httpd.conf

dest: /etc/httpd/conf/httpd.conf

mode: "0644"

owner: apache

group: apache

notify:

- Restart_apache

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_handlers.html

So what’s new here?

The "notify" parameter calls the handler only when the copy task actually changes the file. That way the service

is only restarted if needed - and not each time the playbook is run.

The "handlers" section defines a task that is only run on notification.

Run the playbook. We didn’t change anything in the file yet so there should not be any changed lines in the output

and of course the handler shouldn’t have fired.

Now change the Listen 80 line in ~/ansible-files/files/httpd.conf to:

Run the playbook again. Now the Ansible’s output should be a lot more interesting:

httpd.conf should have been copied over

The handler should have restarted Apache

By default, handlers run after all the tasks in a particular play have been completed.

Apache should now listen on port 8080. Easy enough to verify:

If you are using the local development environment, remember, you are using containers instead of actual VMs! You

need to append the correct port (e.g. curl http://node1:8002" for Port 80, curl http://node1:8003" for Port

8080).

Take a look at the table with the ports overview or execute podman ps and check the output.

Run the playbook one last time. As the configuration file is already copied over with the desired configuration state,

the handler is not triggered, Apache will keep running.

Listen 8080

Note

[student@ansible-1 ansible-files]$ curl http://node1

curl: (7) Failed to connect to node1 port 80: Connection refused

[student@ansible-1 ansible-files]$ curl http://node1:8080

<body>

<h1>This is a development webserver, have fun!</h1>

</body>

Warning

file:///demo-environment/local-demo-environment/#lab-diagram

© Tim Grützmacher 2025

